Absorbed dose to the urinary bladder using dynamic S-values

MARTIN ANDERSSON1, DAVID MINARIK1, LENNART JOHANSSON2, SÖREN MATTSSON1, SIGRID LEIDE-SVEGBORN1

1MEDICAL RADIATION PHYSICS, DEPARTMENT OF CLINICAL SCIENCES MALMÖ, LUND UNIVERSITY
2DEPARTMENT OF RADIATION SCIENCE, UMEÅ UNIVERSITY, SWEDEN
Disclosure Statement

- Research Support 1:

- Consultant 2:

- Speakers Bureau 3:

- Honoraria and/or Stockholder 4,5:

1 Do you receive financial support or support in kind (e.g., free radiopharmaceuticals) from companies/institutions for your research activities? If yes, please specify for which research activity and from which company.

2 Are you acting as a consultant to any company in the field of Nuclear Medicine? If yes, please specify for which company you are acting.

3 Are you hired and paid by a speakers bureau and/or a company to hold scientific talks? If yes, please specify by which speakers bureau/company and on which subject.

4 Do you receive any other honorarium not mentioned above that you would like to disclose? If yes, please specify.

5 Do you hold shares in any companies in the field of Nuclear Medicine which would give rise to a potential conflict of interest and which you need to disclose? If yes, please specify.
Radiation dose to Patients from different radiopharmaceuticals are published in ICRP publication 53, 80 and 106.

The absorbed dose to the urinary bladder wall is calculated using a fixed urinary bladder content volume of 202.6 mL.
Background - Previous dynamic models

First model: Cloutier et al. (1973):

Investigated the dose to a foetus from the urinary bladder

Snyder and Ford (1976):

Started to calculate the absorbed dose to the urinary bladder wall

Latest model: Thomas et al. (1999):

Calculated the absorbed dose to the inner surface of the bladder wall
Aim

To improve the previous models with:
• Dynamic dose conversion factors (S-value)
• Monte Carlo simulated electrons
• Realistic anatomical material
• Calculating the mean absorbed dose to the urinary bladder wall
Anatomy:

- Yellow = Urine
- Blue = Bladder wall
- Magenta = Water

Mass of bladder wall:

- Male = 50.01 g
- Female = 40.00 g

Elemental compositions from ICRP publ. 110
Methods – SAF values

• Specific absorbed fraction is the absorbed fraction divided by the mass of the target region

\[\Phi(r_T \leftarrow r_s, E_{R,i}) = \frac{\Phi(r_T \leftarrow r_s, E_{R,i})}{M_{r_T}} \]
Methods - Dynamic SAF-values

Dynamic SAF-values:
• 17 different volumes (ranging from 10 mL to 800 mL)
• 25 different mono-energetic values for both photons and electrons (ranging from 10 keV to 10 MeV)
• Source regions:
 – Urinary bladder wall
 – Urinary content
Calculations

The time-dependent bladder content volume:

\[V(t) = V_0 + \int U(t) dt; \quad 0 \leq t < T_1 \]

\[V_r + \int U(t) dt; \quad T_{n-1} < t \leq T_n \]

Time-dependent bladder content:

\[A(t) = A_0 e^{-\lambda t} \sum_{j=1}^{m} \alpha_j (1 - e^{-\lambda t}) \]

Mean absorbed dose to the urinary bladder:

\[D(r_T, T_D) = \sum_{r_s} \int A(r) dr \]

The absorbed dose for \(^{99m}\text{Tc MAG3}\)
Results 99mTc

- Fixed SAF value (male)
- Fixed SAF value (female)
- Dynamic SAF value (male)
- Dynamic SAF value (female)
- MIRD dose to inner surface
Results

Absorbed dose (mGy/Mbq)

- Fixed SAF value (male)
- Fixed SAF value (female)
- Dynamic SAF value (male)
- Dynamic SAF value (female)
- MIRD dose to inner surface

F-18 FDG Sr-89 SrCl In-111 DTPA I-123 Iodine I-123 Nal I-123 OIH I-131 Nal I-131 OIH I-124 OIH
Conclusion

• New more realistic SAF values that calculates the mean absorbed dose to the bladder wall

• An increase in absorbed dose using dynamic SAF values compared to static SAF-values.
Thank you for listening