Measurement of airway inflammation in smokers by means of positron emission tomography

Sabine Garpered MD

Lars Edenbrandt, Sven Valind, Per Wollmer
Department of Clinical Sciences Malmö, Lund University, Sweden

ERS 2012
1-5 september Vienna
Disclosure

The authors have no financial interest to declare in relation to the content in this presentation.
High uptake of 18FDG in infectious/inflammatory lesions

Tuberculosis
High uptake of 18FDG in infectious/inflammatory lesions

Sarcoidosis

Steroid treatment

Before

After

ERS 1-5 sept 2012
Vienna

NUMEMA
Nuclear Medicine in Malmö
Purpose

To evaluate whether there is any differences in the 18FDG-uptake in current smoker and never-smoker
Material

Inclusion criteria

Patients undergoing 18FDG-PET/CT for staging of cancer
No region of increased lung density on CT
No localised high uptake of 18FDG
Material

Exclusion criteria

- Cardiovascular disease,
- Diabetes mellitus
- Vasculitis
- Inflammatory arthritis
- Renal impairment
- Glucocorticoids, or anti-inflammatory therapies.
- Localised uptake of 18FDG in the lungs were excluded.
- Interstitial lung disease
Patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>Never-smokers</th>
<th>Smokers</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>11/12</td>
<td>12/10</td>
</tr>
<tr>
<td>Age (y)</td>
<td>60.7 ± 13.6</td>
<td>65.2 ± 10.3</td>
</tr>
<tr>
<td>Current smoking (cigarettes/day)</td>
<td>0</td>
<td>17 ± 5</td>
</tr>
<tr>
<td>Total smoking (pack years)</td>
<td>0</td>
<td>41 ± 16</td>
</tr>
</tbody>
</table>

ERS 1-5 sept 2012 Vienna
Methods

Procedure

Measurement of blood glucose.
Injection of 18FDG, 4 MBq/kg, \leq 400 MBq.
Uptake time approx. 60 min.
Contrast enhanced CT, low dose CT for attenuation correction.
Imaging from the base of the skull to the thighs.
Standardized uptake value, SUV

\[\text{SUV} = \frac{\text{tissue concentration (kBq/mL)}}{\text{injected activity/body weight (kBq/g)}} \]

To be representative for lung tissue, the SUV measured must be divided by lung density.
Conventional calculation of SUV not appropriate for the lung

Density of normal lung tissue 0.3 g/ml
SUV is dependent on lung inflation declining with increased lung volume
Semi-automatic software

ERS 1-5 sept 2012
Vienna
Semi-automated Analysis of SUV
Results

<table>
<thead>
<tr>
<th></th>
<th>Never-smokers</th>
<th>Smokers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose (mmol/L)</td>
<td>5.9 ± 1.0</td>
<td>6.6 ± 1.1</td>
</tr>
<tr>
<td>Uptake time (min)</td>
<td>68 ± 13</td>
<td>72 ± 10</td>
</tr>
<tr>
<td>SUV_{blood}</td>
<td>1.68 ± 0.21</td>
<td>1.61 ± 0.24</td>
</tr>
<tr>
<td>SUV_{lung}</td>
<td>0.49 ± 0.10</td>
<td>0.49 ± 0.11</td>
</tr>
<tr>
<td>DL (HU)</td>
<td>-750 ± 50</td>
<td>-772 ± 56</td>
</tr>
<tr>
<td>SUV_{lung} / DL</td>
<td>1.84 ± 0.20</td>
<td>2.00 ± 0.21 p<0.05</td>
</tr>
</tbody>
</table>
18FDG uptake corrected for lung density

<table>
<thead>
<tr>
<th>Smoking status</th>
<th>Mean±SE</th>
<th>Mean±1.96*SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-smoker</td>
<td>1.90</td>
<td>1.85</td>
</tr>
<tr>
<td>Smoker</td>
<td>1.95</td>
<td>1.90</td>
</tr>
</tbody>
</table>

ERS 1-5 sept 2012
Study limitations

Presence of cancer and the underlying disease may affect the glucose uptake in the lungs e.g. by the presence of micrometastases.

No information about lung function.
Conclusion

18FDG uptake is higher in peripheral lung in smokers than in never-smokers. This may reflect inflammation in small airways and alveoli.

18FDG-PET/CT may offer a means of studying lung inflammation in smokers at a group level.
Thank you for your attention!