Attenuation corrected images in myocardial perfusion scintigraphy better predicts the need for a rest study than non-corrected images.

Elin Trägårdh, a Karin Nyström, b Lars Edenbrandt a,b

aClinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund University, Malmö, Sweden bEXINI Diagnostics, Lund, Sweden

www.numema.se
Disclosure Slide

- **Research Support ¹:** N/A
- **Consultant ²:** N/A
- **Speakers Bureau ³:** N/A
- **Honoraria and/or Stockholder ⁴:** Lars Edenbrandt and Karin Nyström are stockholders of EXINI Diagnostics

¹ Do you receive financial support or support in kind (e.g., free radiopharmaceuticals) from companies/institutions for your research activities? If yes, please specify for which research activity and from which company.

² Are you acting as a consultant to any company in the field of Nuclear Medicine? If yes, please specify for which company you are acting.

³ Are you hired and paid by a speakers bureau to hold scientific talks? If yes, please specify by which speakers bureau and on which subject. Are you paid by any company to hold scientific talks in the field of Nuclear Medicine? If yes, please specify by which company and for which talks.

⁴ Do you receive any other honoraria not mentioned above that you would like to disclose? If yes, please specify. Do you hold shares in any companies in the field of Nuclear Medicine which would give rise to a potential conflict of interest and which you need to disclose? If yes, please specify.
Background

• Attenuation may create artefacts that mimic perfusion abnormalities

• Attenuation reduces laboratory efficiency by requiring comparison of stress and rest image sets to distinguish perfusion abnormalities from attenuation artefacts

• If a stress study is normal, no rest study is necessary

• Previous studies have found that AC images increased the ability to interpret studies as normal or abnormal and reduced the need for rest imaging
Purpose

• To compare the accuracy of computerized determination of the need for a rest study when using NC images or AC images
Method

- 1266 patients with 99Tc MPS during 2007
- Gold standard: Final report according to clinical routine
 - Ischemia/infarction = need for rest study
 - No ischemia/infarction = no need for rest study
- EXINI heart™ was used to interpret the AC and NC images separately
 - Normal
 - Abnormal
- AC normal stress database / NC normal stress database
Normal stress databases

Female

NC

Male

AC
Results

<table>
<thead>
<tr>
<th></th>
<th>NC</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>83%</td>
<td>86%</td>
</tr>
<tr>
<td>Specificity</td>
<td>73%</td>
<td>79%</td>
</tr>
<tr>
<td>PPV</td>
<td>52%</td>
<td>59%</td>
</tr>
<tr>
<td>NPV</td>
<td>93%</td>
<td>94%</td>
</tr>
<tr>
<td>Accuracy</td>
<td>76%</td>
<td>81%</td>
</tr>
</tbody>
</table>

McNemar analysis: $p < 0.0001$
Conclusion

• Sensitivity, specificity, PPV, NPV and accuracy increased when using AC images compared to NC images

• Computer interpretation using AC images could be of value when determining the need for a rest study